首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   54篇
  国内免费   183篇
地球物理   12篇
地质学   403篇
海洋学   1篇
综合类   11篇
自然地理   4篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   13篇
  2020年   10篇
  2019年   17篇
  2018年   15篇
  2017年   13篇
  2016年   10篇
  2015年   14篇
  2014年   16篇
  2013年   28篇
  2012年   27篇
  2011年   18篇
  2010年   8篇
  2009年   19篇
  2008年   12篇
  2007年   19篇
  2006年   15篇
  2005年   16篇
  2004年   20篇
  2003年   8篇
  2002年   8篇
  2001年   11篇
  2000年   16篇
  1999年   19篇
  1998年   11篇
  1997年   15篇
  1996年   4篇
  1995年   5篇
  1994年   10篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   4篇
  1989年   1篇
  1987年   2篇
排序方式: 共有431条查询结果,搜索用时 31 毫秒
1.
Phase equilibria modelling coupled with U–Pb zircon and monazite ages of garnet–cordierite gneiss from Vallikodu Kottayam in the Kerala Khondalite Belt,southern India are presented here.The results suggest that the area attained peak P–T conditions of^900C at 7.5–8 kbar,followed by decompression to 3.5–5 kbar and cooling to 450–480C,preserving signatures of the partial melting event in the field of high to ultra-high temperature metamorphism.Melt reintegration models suggest that up to 35%granitic melt could have been produced during metamorphism at^950C.The U–Pb age data from zircons(~1.0–~0.7 Ga)and chemical ages from monazites(~540 Ma and^941 Ma)reflect a complex tectonometamorphic evolution of the terrain.The^941 Ma age reported from these monazites indicate a Tonian ultra-high temperature event,linked to juvenile magmatism/deformation episodes reported from the Southern Granulite Terrane and associated fragments in Rodinia,which were subsequently overprinted by the Cambrian(~540 Ma)tectonothermal episode.  相似文献   
2.
Contact aureoles of the anorthositic to granitic plutons of the Mesoproterozoic Nain Plutonic Suite (NPS), Labrador, are particularly well developed in the Palaeoproterozoic granulite facies, metasedimentary, Tasiuyak gneiss. Granulite facies regional metamorphism (MR), c. 1860 Ma, led to biotite dehydration melting of the paragneiss and melt migration, leaving behind biotite‐poor, garnet–sillimanite‐bearing quartzofeldspathic rocks. Subsequently, Tasiuyak gneiss within a c. 1320 Ma contact aureole of the NPS was statically subjected to lower pressure, but higher temperature conditions (MC), leading to a second partial melting event, and the generation of complex mineral assemblages and microstructures, which were controlled to a large extent by the textures of the MR assemblage. This control is clearly seen in scanning electron microscopic images of thin sections and is further supported by phase equilibria modelling. Samples collected within the contact aureole near Anaktalik Brook, west of Nain, Labrador, mainly consist of spinel–cordierite and orthopyroxene–cordierite (or plagioclase) pseudomorphs after MR sillimanite and garnet, respectively, within a quartzofeldspathic matrix. In addition, some samples contain fine‐grained intergrowths of K‐feldspar–quartz–cordierite–orthopyroxene inferred to be pseudomorphs after osumulite. Microstructural evidence of the former melt includes (i) coarse‐grained K‐feldspar–quartz–cordierite–orthopyroxene domains that locally cut the rock fabric and are inferred to represent neosome; (ii) very fine‐ to medium‐grained cordierite–quartz intergrowths interpreted to have formed by a reaction involving dissolution of biotite and feldspar in melt; and (iii) fine‐scale interstitial pools or micro‐cracks filled by feldspar interpreted to have crystallized from melt. Ultrahigh temperature (UHT) conditions during contact metamorphism are supported by (i) solidus temperatures >900 °C estimated for all samples, coupled with extensive textural evidence for contact‐related partial melting; (ii) the inferred (former) presence of osumilite; and (iii) titanium‐in‐quartz thermometry indicating temperatures within error of 900 °C. The UHT environment in which these unusual textures and minerals were developed was likely a consequence of the superposition of more than one contact metamorphic event upon the already relatively anhydrous Tasiuyak gneiss.  相似文献   
3.
樊海龙  杨高学  郭建明  马雪云  刘翔 《地质论评》2022,68(5):2022102002-2022102002
现代地球岩石圈主要由镁铁质上地幔和长英质地壳两个储集层组成,研究大陆地壳的形成和演化对揭示地球早期地质过程和物质循环、厘定板块构造启动时限具有重要意义。冥古宙—始太古代具有更高的地幔潜能温度和地温梯度,岩浆海冷却形成薄的原始地壳;大洋岩石圈表现为韧性,主要构造机制应为停滞盖层模式,有地幔柱参与。太古宙片麻岩中奥长花岗岩—英云闪长岩—花岗闪长岩(TTG)的出现标志着镁铁质原始地壳向长英质陆壳转变的开始。本文总结了地球早期停滞盖层模式到现代板块构造模式下含水玄武岩部分熔融、结晶分异形成大陆地壳的过程,主要包含幔源岩浆停滞盖层(“自下而上”的热管火山岩和“自上而下”的深成侵入岩构造模式)、增厚镁铁质地壳部分熔融、俯冲洋壳、岛弧及洋底高原部分熔融模式;陆壳的破坏和消减主要受陨石撞击、分层沉降、重力不稳导致拆沉控制;板块构造的出现进一步促进了地球内部的热量扩散,俯冲作用加快了洋壳和陆壳之间的物质循环。最后,结合太古宙变质岩、古老克拉通岩石学特征和锆石Hf、O及全岩Nd、Sr、Ar、Ti同位素组成,讨论了陆壳的形成时间和演化过程: 3.0 Ga之前形成了现有陆壳体积的60%~70%,厚度约为20~40 km;3.0~2.5 Ga,地壳改造速率明显增加,陆壳生长和破坏速率达到动态平衡,表明全球性现代板块构造体制逐渐成为控制大陆形成、裂解和陆壳演化的主要因素。  相似文献   
4.
对钦杭结合带西南段大瑶山东南缘的中晚侏罗世埃达克质花岗岩(165~153 Ma)进行了岩石学、地球化学研究,并探讨了埃达克质和TTG岩类的特征属性。岩石SiO2含量63.76%~72.13%,总体具高Al2O3(Al2O3≥15%)、低MgO (<3%),亏损重稀土元素(HREE)、正Eu异常或弱的负Eu异常,低Y (≤18×10-6)和Yb (≤1.9×10-6),高Sr (>300×10-6)和Sr/Y值(>20)等埃达克岩独特的地球化学特征。结合区域构造演化分析认为,该侏罗纪埃达克质花岗岩形成于陆内伸展构造背景,为大陆板内加厚(隆起区)的下地壳底部岩石部分熔融的产物,属大陆板内环境I型花岗岩。具有类似于低镁安山岩/闪长岩系列(LMA)和镁安山岩/闪长岩系列(MA)两种高压型TTG亚类的属性,为古俯冲增生带下地壳弧型岩石熔融的继承性特征,与中生代古太平洋俯冲板片熔融过程无关,属非俯冲成因的埃达克/TTG岩类。其空间上与大瑶山东南缘早古生代俯冲增生带高度重合,且与早古生代TTG侵入岩组合紧密相邻,提示它们可能源自于早古生代洋壳俯冲带或大陆边缘弧下地壳玄武质岩石的部分熔融,因而具有洋俯冲成因的特征属性。  相似文献   
5.
现代地球岩石圈主要由镁铁质上地幔和长英质地壳两个储集层组成,研究大陆地壳的形成和演化对揭示地球早期地质过程和物质循环、厘定板块构造启动时限具有重要意义。冥古宙—始太古代具有更高的地幔潜能温度和地温梯度,岩浆海冷却形成薄的原始地壳;大洋岩石圈表现为韧性,主要构造机制应为停滞盖层模式,有地幔柱参与。太古宙片麻岩中奥长花岗岩—英云闪长岩—花岗闪长岩(TTG)的出现标志着镁铁质原始地壳向长英质陆壳转变的开始。本文总结了地球早期停滞盖层模式到现代板块构造模式下含水玄武岩部分熔融、结晶分异形成大陆地壳的过程,主要包含幔源岩浆停滞盖层(“自下而上”的热管火山岩和“自上而下”的深成侵入岩构造模式)、增厚镁铁质地壳部分熔融、俯冲洋壳、岛弧及洋底高原部分熔融模式;陆壳的破坏和消减主要受陨石撞击、分层沉降、重力不稳导致拆沉控制;板块构造的出现进一步促进了地球内部的热量扩散,俯冲作用加快了洋壳和陆壳之间的物质循环。最后,结合太古宙变质岩、古老克拉通岩石学特征和锆石Hf、O及全岩Nd、Sr、Ar、Ti同位素组成,讨论了陆壳的形成时间和演化过程:3.0 Ga之前形成了现有陆壳体积的60%~70%,厚度约为20~4...  相似文献   
6.
The Montagne Noire in the southernmost French Massif Central is made of an ENE‐elongated gneiss dome flanked by Palaeozoic sedimentary rocks. The tectonic evolution of the gneiss dome has generated controversy for more than half a century. As a result, a multitude of models have been proposed that invoke various tectonic regimes and exhumation mechanisms. Most of these models are based on data from the gneiss dome itself. Here, new constraints on the dome evolution are provided based on a combination of very low‐grade petrology, K–Ar geochronology, field mapping and structural analysis of the Palaeozoic western Mont Peyroux and Faugères units, which constitute part of the southern hangingwall of the dome. It is shown that southward‐directed Variscan nappe‐thrusting (D1) and a related medium‐P metamorphism (M1) are only preserved in the area furthest away from the gneiss dome. The regionally dominant pervasive tectono‐metamorphic event D2/M2 largely transposes D1 structures, comprises a higher metamorphic thermal gradient than M1 (transition low‐P and medium‐P metamorphic facies series) and affected the rocks between c. 309 and 300 Ma, post‐dating D1/M1 by more than 20 Ma. D2‐related fabrics are refolded by D3, which in its turn, is followed by dextral‐normal shearing along the basal shear zone of both units at c. 297 Ma. In the western Mont Peyroux and Faugères units, D2/M2 is largely synchronous with shearing along the southern dome margin between c. 311 and 303 Ma, facilitating the emplacement of the gneiss dome into the upper crust. D2/M2 also overlaps in time with granitic magmatism and migmatization in the Zone Axiale between c. 314 and 306 Ma, and a related low‐P/high‐T metamorphism at c. 308 Ma. The shearing that accompanied the exhumation of the dome therefore was synchronous with a peak in temperature expressed by migmatization and intrusion of melts within the dome, and also with the peak of metamorphism in the hangingwall. Both, the intensity of D2 fabrics and the M2 metamorphic grade within the hangingwall, decrease away from the gneiss dome, with grades ranging from the anchizone–epizone boundary to the diagenetic zone. The related zonation of the pre‐D3 metamorphic field gradients paralleled the dome. These observations indicate that D2/M2 is controlled by the exhumation of the Zone Axiale, and suggest a coherent kinematic between the different crustal levels at some time during D2/M2. Based on integration of these findings with regional geological constraints, a two‐stage exhumation of the gneiss dome is proposed: during a first stage between c. 316 and 300 Ma dome emplacement into the upper crust was controlled by dextral shear zones arranged in a pull‐apart‐like geometry. The second stage from 300 Ma onwards was characterized by northeast to northward extension, with exhumation accommodated by north‐dipping detachments and hangingwall basin formation along the northeastern dome margin.  相似文献   
7.
Staurolite–cordierite assemblages are common in mica schists of the Aston and Hospitalet gneiss domes of the central Axial Zone, Pyrenees (France, Andorra). Within a 200 m wide zone, staurolite, cordierite and andalusite porphyroblasts contain inclusion trails that preserve the same stage of development of a crenulation cleavage, strongly suggesting that all three phases are contemporaneous. Their syntectonic growth occurred during a short period at the beginning of the formation of the dominant schistosity (S2) of the domes. Staurolite and cordierite touching each other further indicates an equilibrium relationship. Whole‐rock analyses show that some staurolite–cordierite schists are depleted in K2O compared to post‐Archean shales (PAAS) and amphibolite facies pelites. Analysis of the st‐crd paragenesis in K‐poor schists without muscovite using KFMASH and MnNCKFMASH petrogentic grids, pseudosections and AFM compatibility diagrams predicts stable conditions at pressures of ~3.5 kbar at 575 °C. For metapelites with intermediate XMg values (0.7 >  XMg >0.48) a ‘muscovite‐out window’ exists from 550–650 °C at 3.5 kbar in the KFMASH system. Conventional thermobarometry (GB‐GASP, AvT‐AvP) and petrogenetic grids show an isobaric P–T path to peak temperatures of ~650 °C, supported by the presence of sillimanite‐K‐feldspar gneiss and migmatites. LP‐HT metamorphism in the Aston dome is related to early Carboniferous (c. 339 Ma) granitic intrusions into the dome core. As metamorphism is directly linked with the formation of the main S2 schistosity, the temporal relations demonstrated in this study conflict with previous studies which constrained LP‐HT metamorphism and the development of flat‐lying schistosity to the late Carboniferous (315–305 Ma) – at least in the eastern Axial Zone.  相似文献   
8.
大青山位于华北克拉通西部孔兹岩带中段,古元古代晚期孔兹岩系(上乌拉山岩群)十分发育。近年来,在上乌拉山岩群中分辨出一套古元古代早期变质碎屑沉积岩(大青山表壳岩,榴云片麻岩),它们遭受强烈变质变形和深熔作用改造,形成古元古代早期石榴石花岗岩。包头哈德门沟是古元古代早期榴云片麻岩典型出露区,并有古元古代早期石榴石花岗岩(哈德门沟石榴石花岗岩)形成。由榴云片麻岩经深熔榴云片麻岩再到石榴石花岗岩,浅色体增多,石榴石增多且颗粒增大,黑云母减少,石榴石包裹黑云母、石英、斜长石等矿物。石榴石岩的锆石呈浑圆状,普遍具核-幔-边或核-边结构,碎屑锆石年龄为~2.5Ga,变质锆石年龄为~2.45Ga和~1.90Ga。锆石形态、内部结构和年龄与榴云片麻岩、深熔榴云片麻岩和石榴石花岗岩中的锆石类似,但记录了古元古代晚期变质事件年龄。石榴石花岗岩与榴云片麻岩和深熔榴云片麻岩的地球化学组成特征总体上类似,高Al2O3含量和FeO T/MgO比值,CaO含量和K2O/Na2O比值存在较大变化,富集轻稀土和大离子亲石元素,亏损Nb、Ta、P和Ti。研究表明:1)浅色体和石榴石花岗岩中的石榴石是黑云母转熔的产物,并非岩浆结晶形成的;2)石榴石岩是在石榴石花岗岩岩浆形成之后进一步演化过程中石榴石不断地发生运移、分异和聚集的结果;3)尽管哈德门沟石榴石花岗岩具有一定或较大的规模,但具有深熔岩浆的性质;4)石榴石花岗岩地球化学组成变化与熔融母岩组成变化和深熔及岩浆演化过程中残余矿物相石榴石、锆石局部变化有关。  相似文献   
9.
英云闪长岩-奥长花岗岩和花岗闪长岩(简称TTG)是太古宙高级变质地体的主要物质组成,对深入理解早期大陆生长及其机制具有重要的科学意义。目前,人们对其成因过程与机制仍有不同认识。本文以怀安陆块中广泛分布的TTG片麻岩为例,探讨其成因演化和机制。研究区位于华北克拉通中北部,主要由新太古代英云闪长岩及少量奥长花岗岩、花岗闪长岩组成。我们从该区识别出富硅富重稀土和负铕异常的低铝奥长花岗质片麻岩,形成时代与广泛分布的高铝TTG质片麻岩一致(锆石SHRIMP U-Pb年龄2.53Ga)。岩石地球化学数据显示,低铝奥长花岗质片麻岩的主量元素具有富SiO 2(76%~79%),低Al2O3(11.01%~12.61%)、CaO(1.27%~1.59%)、MgO(0.74%~0.24%)和Mg#(18~53)等特征,而广泛分布的高铝TTG岩系的主量元素含量变化大,例如,SiO 2=63%~77%、Al2O3=13.2%~17.77%、CaO=1.8%~5.78%、MgO=0.18%~3.84%和Mg#=35~64。微量元素方面,低铝奥长花岗质片麻岩具有Eu/Eu*负异常(除1个样品为弱正异常1.38外,其余样品分布在0.59~0.44),富集重稀土((La/Yb)N=4~7,(Gd/Yb)N=0.36~1.27),而高铝TTG岩系从弱负铕异常到正异常(Eu/Eu*=0.8~5.35),轻重稀土分馏明显((La/Yb)N=10~103、(Gd/Yb)N=1.97~5.72)。在微量蛛网图中二者的区别除重稀土明显存在区别外,低铝奥长花岗质片麻岩显示出Ba、Sr的相对亏损,而高铝TTG岩系则相反。二者Lu/Hf比值差异明显,低铝奥长花岗质片麻岩变化在0.1~0.16,而高铝TTG岩系变化在0.01~0.07。在Lu/Hf与相关元素以及SiO 2与相关元素哈克图解中,二者差异更加明显,表明它们之间不存在直接的成因联系。综合锆石U-Pb、Lu-Hf同位素特征以及岩石地球化学特征,我们认为低铝奥长花岗质片麻岩是低压下由新太古代新生基性地壳物质低程度部分熔融而成,源区残留矿物相以辉石+斜长石为主,岩浆可能存在过独居石的分异作用。高铝TTG岩系主要由新生基性地壳在相对高压下部分熔融而成,源区残留相以石榴石+辉石+角闪石以及无或少量斜长石为特征。岩浆经历过角闪石和辉石分离结晶作用,铕正异常增大的现象可能与斜长石堆晶有关。本区同时形成高铝和低铝TTG岩系的机制还需深入研究。俯冲机制、地幔柱机制以及二者共同作用等机制均能解释TTG的成因。依据本区同期还形成大量辉长质-闪长质岩浆和稍晚(2.5~2.45Ga)形成的钾质花岗岩类岩浆的侵入活动,我们认为本区高铝和低铝TTG岩系分别来自底侵作用导致的下地壳不同深度不同程度的部分熔融有关。引起底侵作用的机制可能与地幔柱或地幔柱与板块俯冲共同作用有关。  相似文献   
10.
Precipitation runoff is a critical hillslope hydrological process for downslope streamflow and piedmont/floodplain recharge. Shimen hillslope micro‐catchment is strategically located in the central foothill region of Taihang Mountains, where runoff is crucial for water availability in the piedmont corridors and floodplains of north China. This study analyzes precipitation‐runoff processes in the Shimen hillslope micro‐catchment for 2006–2008 using locally designed runoff collection systems. The study shows that slope length is a critical factor, next only to precipitation, in terms of runoff yield. Regression analysis also shows that runoff is related positively to precipitation, and negatively to slope length. Soil mantle in the study area is generally thin and is therefore not as critical a runoff factor as slope length. The study shows a significant difference between overland and subsurface runoff. However, that between the 0–10 and 10–20 cm subsurfaces is insignificant. Runoff hardly occurs under light rains (<10 mm), but is clearly noticeable under moderate‐to‐rainstorm events. In the hillslope catchment, vertical infiltration (accounting for 42–84% of the precipitation) dominates runoff processes in subsurface soils and weathered granite gneiss bedrock. A weak lateral flow (at even the soil/bedrock interface) and the generally small runoff suggest strong infiltration loss via deep percolation. This is critical for groundwater recharge in the downslope piedmont corridors and floodplains. This may enhance water availability, ease water shortage, avert further environmental degradation, and reduce the risk of drought/flood in the event of extreme weather conditions in the catchment and the wider north China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号